
Practical Assignment 1: HTTP
Client - Server

The goal of this assignment is to gain experience in application layer network pro-
gramming through Python Sockets and get familiarized with the basics of distributed
programming. Specifically, this assignment will help to understand the Hypertext
Transfer Protocol (HTTP), which is one of the widely used protocols on the Internet,
and the operation of webpage translators. This project illustrates that correctly follow-
ing protocol standards allows your programs to interact with each other but also with
other people’s programs using application layer networking concepts.

Assignment Description

Part 1 - HTTP Client
In the first part, you will build an HTTP client that that can connect to HTTP servers
using TCP sockets. Your HTTP client should support HTTP version 1.1. The program
should accept three input arguments:
1. HTTPCommand: HEAD, GET, PUT or POST.
2. URI: e.g. http://www.example.com or http://www.google.com
3. Port: the default port number of 80 should be used to connect with the server.

Given the above arguments, your HTTP client should construct a valid HTTP request,
which it will send to the HTTP server.
For the first part, you can test your client implementation against public HTTP servers
using any URI’s, such as http://www.example.com or http://www.google.com.

After each request, your client should create and store the body of response it re-
ceived from the server in an HTML file.
You may also display the response on the terminal for debugging.
The size of the body is indicated by the HTTP server with one of two headers: ‘Con-
tent-Length’ or ‘Transfer-Encoding: chunked’, which determine how your client
should read the body. Your client needs to support both of these two headers.

When you retrieve a webpage from the server, you should scan the HTML file and
check for embedded objects, such as images. You can choose any parser to scan the
HTML file, but you are not allowed to use any API’s from the parser library to re-
trieve the images. If you find embedded images in the HTML file, you should use the
GET command to retrieve those images as well. When these embedded images are
also stored on the same server, you should use the existing socket to request these im-
ages. Otherwise, you should connect with a new socket to the server(s) that have these
images. The retrieved images should be stored locally.
Note#1: the HTML specifies the paths to these images, as stored on the server. You
may alter these paths to point to the right directory where your client stores the re-
trieved images. This is the ONLY part of the HTML that you are allowed to modify.

http://www.example.com
http://www.google.com
http://www.example.com
http://www.google.com

For PUT and POST commands, your client should prompt the user for a string, read
the given string and send that to the HTTP server. These two commands will be tested
with your HTTP server program (see Part 2).

For debugging purposes, we strongly recommend to use “telnet” [6]. Telnet enables
you to connect to a remote server and issue HTTP commands through your terminal,
where you can view the HTTP response of the server. An example is shown below:

To summarize, your HTTP client is successfully implemented when it can correctly
send HEAD, GET, PUT, POST HTTP commands. GET involves retrieving any web-
page from the Internet, along with its embedded images. You can test if GET works
correctly by double-clicking the html file in which you stored the body of the re-
sponse. If your client retrieves and stores all contents correctly, the retrieved webpage
will appear identical to what you would see if you used your web-browser to retrieve
it.  
Note#2: In principle, your HTTP client should be able to retrieve any webpage from
the Internet. In the demo, at least one of the webpages we will ask you to retrieve will
be from the list given below. Naturally, you should use the following URI’s to test
your client program:

o www.example.com
o www.google.com
o www.tcpipguide.com

http://www.example.com
http://www.google.com

o www.jmarshall.com
o www.tldp.org
o www.tinyos.net
o www.linux-ip.net 

Part 2 - HTTP Server
In the second part, you will implement your own HTTP server, which should host a
simple web page on your local machine. You can make a simple .html file, or use one
of the web pages by your client. In any case, the stored webpage should also contain
at least one embedded image, which is stored in the same directory.
 
Your HTTP server should be multi-threaded to support multiple clients at the same
time. You can create multiple tabs in your web browser to test this with your HTTP
server. The server should support the following client operations: HEAD, GET, PUT
and POST. Your HTTP Server should handle multiple clients at the same time. Create
multiple tabs in your web browser to test this with your HTTP server.

A client should be able to retrieve the web page hosted on your server, along with the
embedded image(s). The client can either be your own HTTP Client from Part 1, or
any third party client such as Firefox or Chrome. If you have followed the protocol
standards correctly, any client will be able to interact with your server.

In the case of PUT and POST commands, your HTTP server should store the data re-
ceived from clients in a text file, stored in the same directory.
For the PUT command, the user input should be stored in a new text file on the server.
For the POST command, the user input should be appended to an existing file on the
server. If the file does not exist, then the file should be created. The name of the file is
specified in the HTTP command as part of the path.

As your server needs to support HTTP version 1.1, it should use persistent connec-
tions and support the if-modified-since HTTP header. Note that the host header field is
mandatory for HTTP version 1.1.

Finally, you should at least support the following status codes on your server:
200 OK
404 Not Found
400 Bad Request
500 Server Error
304 Not Modified

Along with the status codes, the server should send the date, content type and content
length headers to the client.
The server should respond with the “400: Bad Request” status code when the HTTP
Client does not include the host header in its request for HTTP version 1.1.

http://www.linux-ip.net

Practical Guidelines

This is an individual, graded assignment. Your grade will be determined based on
the online demonstration of your submitted project, whose details will follow later.
The submission deadline is 23:59 on Sunday 28th March. We will use your submit-
ted code for the online demo: any changes you make beyond the deadline will not be
taken into account.  
We expect every student to be able to defend the code that they submitted. Thus, it is
not a good idea to just copy paste code from

You will implement this assignment using sockets programming in Python v3.6. You
should use the “socket” to implement the communication between client/server. You
should use the “threading” library to implement your multi-threaded HTTP server.
You are NOT allowed to use libraries that implement the HTTP Client / Server
functionality for you. This includes (but is not limited to) the following libraries:
• http.server,
• http.client,
• SimpleHTTPServer,
• requests,
• httplib,
• urllib.
If you are uncertain about whether or not you are allowed to use a certain library,
please ask on the “Discussion Board” on Toledo, or during one of the Q&A sessions.

Finally, you should document your code, and aim for a good design. You should be
able to motivate your decisions, and explain what your code does, e.g. how a certain
method works in your code or to demonstrate certain functions. Keep that in mind
when copy pasting code bits that you may find online, e.g. Stack Overflow.  
We will test your insight and understanding of HTTP during the demonstration by
asking you additional questions besides the code.

Marking Specifications
The following specifications will be used during the marking session.

HTTP Client Marking (worth 10 out of 20 marks)

Mark Expected Functionality

Below 2 Client is not functional or sufficiently
demonstrated.

2-4 Client failed to work with all web pages.

HTTP Server Marking (worth 10 out of 20 marks)

4-6 Client works with all the web pages sup-
porting HTTP 1.1, but does not store the
web page and images correctly.

7-9 Client works correctly with HTTP 1.1 and
the student has understood the protocol
clearly.

10 All of the previous, with well documented
code and elegant design.

Mark Expected Functionality

Below 2 Server is not functional or sufficiently demonstrated.

2-3 Server handles only one client.

4-6 Server supports HTTP 1.1, but has threading problems.

7 As above with the correct use of threading and proper support for
status codes.

8-9 As above, server successfully serves the provided web page and
embedded image(s), retrieved using your HTTP client program.

10 As above with documented code and elegant design.

References:
Python Sockets. Link
Very short HTTP intro: https://learn.onemonth.com/understanding-http-basics/
More in-depth: https://www.tutorialspoint.com/http/http_quick_guide.htm
From an implementer point-of-view: http://www.jmarshall.com/easy/http/
The HTTP Specification: HTTP 1.0 (RFC 1945).
The HTTP Specification: HTTP 1.1 (RFC 2616).
https://en.wikipedia.org/wiki/Telnet

https://www.geeksforgeeks.org/socket-programming-python/#:~:text=Socket%20programming%20is%20a%20way,reaches%20out%20to%20the%20server.
https://learn.onemonth.com/understanding-http-basics/
https://www.tutorialspoint.com/http/http_quick_guide.htm
http://www.jmarshall.com/easy/http/

	Assignment Description
	Part 1 - HTTP Client
	Part 2 - HTTP Server
	Practical Guidelines
	Marking Specifications
	HTTP Client Marking (worth 10 out of 20 marks)
	HTTP Server Marking (worth 10 out of 20 marks)
	References:

