
OGP Assignment 2017-2018:
Worms (Part I)

This text describes the first part of the assignment for the course Object-
oriented Programming. There is no exam for this course, so all grades are
scored on the assignment. The assignment is preferably made in groups con-
sisting of two students; only in exceptional situations the assignment can be
made individually. Each team must send an email containing the names and
the course of studies of all team members to ogp-inschrijven@cs.kuleuven.be
before the 1st of March. If you cooperate, only one member of the team
should send an email putting the other member in CC.

If during the semester conflicts arise within a group, this should be re-
ported to ogp-inschrijven@cs.kuleuven.be and each of the group members is
then required to complete the project on their own.

The assignment consists of three parts. The first part focusses on a single
class, the second on associations between classes, and the third on inheritance
and generics. After handing in the third part, the entire solution must be
defended before Professor Steegmans or Professor Jacobs.

A number of teaching assistants (TAs) will advise the students and answer
their questions. More specifically, each team has a number of hours where
the members can ask questions to a TA. The TA plays the role of consultant
who can be hired for a limited time. In particular, students may ask the
TA to clarify the assignment or the course material, and discuss alternative
designs and solutions. However, the TA will not work on the assignment
itself. Consultations will generally be held in English. Thus, your project
documentation, specifications, and identifiers in the source code should be
written in English. Teams may arrange consultation sessions by email to
ogp-project@cs.kuleuven.be. Please outline your questions and propose a few
possible time slots when signing up for a consultation appointment. To keep
track of your development process, and mainly for your own convenience, we
encourage you to use the Git version control system. Instructions on how to
obtain a private repository on GitHub, already populated with the provided
GUI code (see section 4), as well as a short tutorial, will appear in a separate

1

mailto:ogp-inschrijven@cs.kuleuven.be
mailto:ogp-inschrijven@cs.kuleuven.be
mailto:ogp-project@cs.kuleuven.be

document on Toledo.
During the assignment, we will create a simple game that is loosely based

on the artillery strategy game Worms. Note that several aspects of the
assignment will not correspond to the original game. Your solution should
be implemented in Java 8 or higher and follow the rules described in this
document.

The goal of this assignment is to test your understanding of the concepts
introduced in this course. For that reason, we provide a graphical user inter-
face and it is up to the teams to implement the requested functionality. The
requested functionality is described at a high level in this document and it
is up to the student to design and implement one or more classes that pro-
vide this functionality. The grades for this assignment do not depend only
on functional requirements. We will also pay attention to documentation,
accurate specifications, re-usability and adaptability.

1 Assignment
Worms is a turn-based artillery strategy game in which the player controls
a team of worms that can move in a two-dimensional landscape. The worms
are equipped with tools and weapons that are to be used to achieve the
goal of the game: kill the worms of other teams and have the last surviving
worms. In this assignment, we will create a game loosely based on the original
artillery strategy released in 1995 by Team17 Digital.

In the first part of the assignment, we focus on a single class Worm. How-
ever, your solution may contain additional helper classes (in particular classes
marked @Value). In the second and third part, we will add additional classes
to our game. In the remainder of this section, we describe the class Worm in
more detail. All aspects of your implementation must be specified both for-
mally and informally.

1.1 Properties of Worms

Each worm is located at a certain location (x, y) in a two-dimensional space.
Both x and y are expressed in metres (m). At this moment, the two-
dimensional space is unbounded in both directions, meaning that worms can
be located at infinity. All aspects related to the location of a worm shall be
worked out defensively.

Each worm faces a certain direction. The orientation of a worm is ex-
pressed as an angle θ in radians. For example, the orientation of a worm
facing right is 0, a worm facing up has π/2 as its orientation, a worm facing

2

left has an orientation equal to π and a worm facing down has 3π/2 as its
orientation. The orientation of a worm will always be in the range 0 . . . 2π,
the latter value not included. All aspects related to the orientation must be
worked out nominally.

The shape of a worm is a circle with finite radius σ (expressed in metres)
centred on the worm’s location. The radius of a worm must at all times be
at least 0.25 m. Yet, the effective radius of a worm may change during the
program’s execution. In the future, the lower bound on the radius may change
and it is possible that different lower bounds will then apply to different
worms. However, the lower bound for a single worm will never change during
the lifetime of that worm. All aspects related to a worm’s radius must be
worked out defensively.

Each worm also has a mass m expressed in kilograms (kg). m is derived
from σ, assuming that the worm has a spherical body and a homogeneous
density p of 1062 kg/m3: m = p · (4/3 · πσ3).

Each worm has a maximum number of action points, and a current num-
ber of action points, which shall be represented by integer values. The max-
imum number of action points of a worm must be equal to the worm’s mass
m, rounded to the nearest integer using the predefined method round in
java.lang.Math. If the mass of a worm changes, the maximum number of
action points must be adjusted accordingly. The current number of action
points may change during the program’s execution. Yet, the current value of
a worm’s action points must always be less than or equal to the maximum
value, but it must never be less than zero. Whenever a worm is created, its
current number of action points will have the maximum value. All aspects
related to action points must be worked out in a total manner.

If not stated otherwise, all numeric characteristics of a worm shall be
treated as double precision floating-point numbers. That is, use Java’s prim-
itive type double to store the radius, the x-coordinate, etc. The charac-
teristics of a worm must be valid numbers (meaning that Double.isNaN
returns false) at all times. However, we do not explicitly exclude the values
Double.NEGATIVE_INFINITY and Double.POSITIVE_INFINITY (unless spec-
ified otherwise).

In addition to the above characteristics, each worm shall have a name.
A worm’s name may change during the program’s execution. Each name is
at least two characters long and must start with an uppercase letter. In the
current version, names can only use letters (both uppercase and lowercase),
quotes (both single and double) and spaces. James o’Hara is an example of
a well-formed name. It is possible that additional characters may be allowed
in later versions of the game. All aspects related to the worm’s name must
be worked out defensively.

3

The class Worm shall provide methods to inspect name, location, orienta-
tion, radius, mass, and action points of a worm.

1.2 Turning and Moving

A worm can move and turn. The class Worm shall provide a method move to
change the location of the worm based on the current location, orientation,
and a number of steps. Movement always occurs in steps. The distance
covered in one step shall be equal to the radius of the worm. The given
number of steps shall never be less than zero. As this method affects the
location of the worm, it must be worked out defensively.

The class Worm must provide a method turn to change the orientation of
the worm by adding a given angle to the current orientation. As this method
affects the orientation, it must be worked out nominally. This means that
the given angle must be such that the resulting angle is in the specified range
for the orientation of a worm.

Active turning and moving costs action points. Changing the orienta-
tion of a worm by 2π shall decrease the current number of action points by
60. Respectively, changing the orientation of a worm by a fraction of 2π/f
must imply a cost of 60/f action points. The cost of movement shall be
proportional to the horizontal and vertical component of the step such that
a horizontal step is at the expense of 1 action point, while a vertical step
incurs costs of 4 action points. The total cost of a step by a worm with
orientation θ can be computed as | cos θ|+ |4 sin θ|. Since action points are to
be handled as integer values, all expenses of action points shall be rounded
up to the next integer.

1.3 Jumping

Worms may also jump along ballistic trajectories. The class Worm shall pro-
vide a method jump to change the location of the worm as the result of a
jump from the current location (x, y) and with respect to the worm’s orienta-
tion θ and the number of remaining action points APs. All methods related
to jumping must be worked out defensively.

Given the remaining activity points APs and the mass m of a worm,
the worm will jump off by exerting a force of F = (5 · APs) + (m · g) for
0.5 s on its body. Here, g represents the standard acceleration in the game
world which is equal to 5.0 m/s2. 1 From this, we can compute the initial

1We use a fictitious value for the standard acceleration instead of the standard accel-
eration on earth to make testing simpler.

4

Figure 1: Illustration of a jumping worm’s trajectory.

velocity of the worm as v0 = (F/m) · 0.5 s. The formula to calculate the
initial velocity may change in the future. However, the resulting value will
always be nonnegative and finite.

The class Worm shall provide a method jumpStep that computes in-flight
locations (x∆t, y∆t) of a jumping worm at any ∆t seconds after launch.
(x∆t, y∆t) may be computed as follows:

v0x = v0 · cos θ
v0y = v0 · sin θ
x∆t = x+ (v0x∆t)
y∆t = y + (v0y∆t− 1

2
g∆t2)

As illustrated in Fig. 1.3, jumping worms always travel horizontally as
if launched from a solid ground line parallel to the x-axis at the worm’s
y location, and return to that line. This means that a worm will jump a
distance d = (v0

2 · sin(2θ))/g horizontally, within the following t = d/(v0 ·
cos θ) seconds. The class Worm shall provide a method jumpTime that returns
the above t for a potential jump from the current location, If the worms
orientation is in the range π < θ < 2π, i.e. the worm is facing downwards,
the worm shall not move. Jumping consumes all remaining action points of
a worm.

The methods jumpTime and jumpStepmust not change any attributes of a
worm. The above equations represent a simplified model of terrestrial physics
and consider uniform gravity with neither drag nor wind. Future phases of
the assignment may involve further trajectory parameters or geographical
features of game world.

5

2 Storing and Manipulating Real Numbers as
Floating-Point Numbers

In your program, you shall use type double as the type for variables that
conceptually need to be able to store arbitrary real numbers, and as the
return type for methods that conceptually need to be able to return arbitrary
real numbers.

Note, however, that variables of type double can only store values that
are in a particular subset of the real numbers (specifically: the values that
can be written as m ·2e where m, e ∈ Z and |m| < 253 and −1074 ≤ e ≤ 970),
as well as positive infinity (written as Double.POSITIVE_INFINITY) and neg-
ative infinity (written as Double.NEGATIVE_INFINITY). (These variables can
additionally store some special values called Not-a-Number values, which are
used as the result of operations whose value is mathematically undefined
such as 0/0; see method Double.isNaN.) Therefore, arithmetic operations
on expressions of type double, whose result type is also double, must gen-
erally perform rounding of their mathematically correct value to obtain a
result value of type double. For example, the result of the Java expression
1.0/5.0 is not the number 0.2, but the number2

0.200000000000000011102230246251565404236316680908203125

When performing complex computations in type double, rounding errors can
accumulate and become arbitrarily large. The art and science of analysing
computations in floating-point types (such as double) to determine bounds
on the resulting error is studied in the scientific field of numerical analysis.

However, numerical analysis is outside the scope of this course; therefore,
for this assignment we will be targeting not Java but idealised Java, a pro-
gramming language that is entirely identical to Java except that in idealised
Java, the values of type double are exactly the extended real numbers plus
some nonempty set of Not-a-Number values:

double = R ∪ {−∞,+∞} ∪ NaNs

Therefore, in idealised Java, operations in type double perform no rounding
and have the same meaning as in regular mathematics. Your solution should
be correct when interpreting both your code and your formal documentation
as statements and expressions of idealised Java.

So, this means that for reasoning about the correctness of your program
you can ignore rounding issues. However, when testing your program, of

2You can check this by running System.out.println(new BigDecimal(1.0/5.0)).

6

course you cannot ignore these. The presence of rounding means that it is
unrealistic to expect that when you call your methods in your test cases, they
will produce the exact correct result. Instead of testing for exactly correct
results, it makes more sense to test that the results are within an acceptable
distance from the correct result. What “acceptable distance” means, depends
on the particular case. For example, in many cases, for a nonzero expected
value, if the relative error (the value |r−e|/|e| where r and e are the observed
and expected results, respectively) is less than 0.01%, then that is an accept-
able result. You can use JUnit’s assertEquals(double, double, double)
method to test for an acceptable distance.

3 Testing
Write JUnit test suite for the class Worm with tests for the methods to move,
to turn and to jump. Include this test suite in your submission.

4 User Interface
We provide a graphical user interface (GUI) to visualise the effects of various
operations on worms. The user interface is included in the assignment as a
JAR file. When importing this JAR file into Eclipse as an existing project,
you will find a folder src-provided that contains the source code of the user
interface and further helper classes. Generally, the files in this folder require
no modification from your side. The classes that you develop must be placed
in the folders src (implementation classes) and tests (test classes).

To connect your implementation to the GUI, write a class Facade in
package worms.facade that implements the provided interface IFacade from
package worms.facade. IFacade.java contains additional instructions on
how to implement the required methods. Read this documentation carefully.

To start the program, run the main method in the class worms.Worms.
After starting the program, you can press keys to modify the state of the
program. The command keys are Tab for switching worms, and
(followed by pressing) to turn, to move forward, + and – to
increase and decrease the worm’s radius, n to change the worm’s name,
j to jump, and esc to terminate the program. Be aware that the GUI

displays only part of the (infinite) space. Your worms may leave and return
to the visible area.

You can freely modify the GUI as you see fit. However, the main focus of
this assignment is the class Worm. No additional grades will be awarded for

7

changing the GUI.
We will test that your implementation works properly by running a num-

ber of JUnit tests against your implementation of IFacade. As described in
the documentation of IFacade, the methods of your IFacade implementa-
tion shall only throw ModelException. An incomplete test class is included
in the assignment to show you what our test cases look like.

5 Submitting
The solution must be submitted via Toledo as a jar file individually by all
team members before the 11th of March 2018 at 11:59 PM. You can generate
a jar file on the command line or using eclipse (via export). Include all source
files (including tests) and the generated class files. Include your name, your
course of studies and a link to your code repository in the comments of your
solution. When submitting via Toledo, make sure to press OK until your
solution is submitted!

6 Feedback
A TA will give feedback on the first part of your project. These feedback
sessions will take place between the 19th and the 30st of March. More infor-
mation will be provided via Toledo.

8

	Assignment
	Properties of Worms
	Turning and Moving
	Jumping

	Storing and Manipulating Real Numbers as Floating-Point Numbers
	Testing
	User Interface
	Submitting
	Feedback

